Structural Features for Predicting the Linguistic Quality of Text - Applications to Machine Translation, Automatic Summarization and Human-Authored Text

نویسندگان

  • Ani Nenkova
  • Jieun Chae
  • Annie Louis
  • Emily Pitler
چکیده

Sentence structure is considered to be an important component of the overall linguistic quality of text. Yet few empirical studies have sought to characterize how and to what extent structural features determine fluency and linguistic quality. We report the results of experiments on the predictive power of syntactic phrasing statistics and other structural features for these aspects of text. Manual assessments of sentence fluency for machine translation evaluation and text quality for summarization evaluation are used as gold-standard. We find that many structural features related to phrase length are weakly but significantly correlated with fluency and classifiers based on the entire suite of structural features can achieve high accuracy in pairwise comparison of sentence fluency and in distinguishing machine translations from human translations. We also test the hypothesis that the learned models capture general fluency properties applicable to human-authored text. The results from our experiments do not support the hypothesis. At the same time structural features and models based on them prove to be robust for automatic evaluation of the linguistic quality of multi-document summaries. Disciplines Computer Sciences Comments Nenkova, A., Chae, J., Louis, A., & Pitler, E., Structural Features for Predicting the Linguistic Quality of Text: Applications to Machine Translation, Automatic Summarization and Human-Authored Text, Empirical Methods in Natural Language Generation: Data Oriented Methods and Empirical Evaluation, 2010, doi: 10.1007/ 978-3-642-15573-4_12 This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/715 Structural Features for Predicting the Linguistic Quality of Text Applications to Machine Translation, Automatic Summarization and Human-Authored Text Ani Nenkova, Jieun Chae, Annie Louis, and Emily Pitler University of Pennsylvania {nenkova,chaeji,lannie,epitler}@seas.upenn.edu Abstract. Sentence structure is considered to be an important component of the overall linguistic quality of text. Yet few empirical studies have sought to characterize how and to what extent structural features Sentence structure is considered to be an important component of the overall linguistic quality of text. Yet few empirical studies have sought to characterize how and to what extent structural features determine fluency and linguistic quality. We report the results of experiments on the predictive power of syntactic phrasing statistics and other structural features for these aspects of text. Manual assessments of sentence fluency for machine translation evaluation and text quality for summarization evaluation are used as gold-standard. We find that many structural features related to phrase length are weakly but significantly correlated with fluency and classifiers based on the entire suite of structural features can achieve high accuracy in pairwise comparison of sentence fluency and in distinguishing machine translations from human translations. We also test the hypothesis that the learned models capture general fluency properties applicable to human-authored text. The results from our experiments do not support the hypothesis. At the same time structural features and models based on them prove to be robust for automatic evaluation of the linguistic quality of multi-document summaries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A survey on Automatic Text Summarization

Text summarization endeavors to produce a summary version of a text, while maintaining the original ideas. The textual content on the web, in particular, is growing at an exponential rate. The ability to decipher through such massive amount of data, in order to extract the useful information, is a major undertaking and requires an automatic mechanism to aid with the extant repository of informa...

متن کامل

Systematic literature review of fuzzy logic based text summarization

Information Overloadrq  is not a new term but with the massive development in technology which enables anytime, anywhere, easy and unlimited access; participation & publishing of information has consequently escalated its impact. Assisting userslq    informational searches with reduced reading surfing time by extracting and evaluating accurate, authentic & relevant information are the primary c...

متن کامل

An Improvement in Support Vector Machines Algorithm with Imperialism Competitive Algorithm for Text Documents Classification

Due to the exponential growth of electronic texts, their organization and management requires a tool to provide information and data in search of users in the shortest possible time. Thus, classification methods have become very important in recent years. In natural language processing and especially text processing, one of the most basic tasks is automatic text classification. Moreover, text ...

متن کامل

Corpus based coreference resolution for Farsi text

"Coreference resolution" or "finding all expressions that refer to the same entity" in a text, is one of the important requirements in natural language processing. Two words are coreference when both refer to a single entity in the text or the real world. So the main task of coreference resolution systems is to identify terms that refer to a unique entity. A coreference resolution tool could be...

متن کامل

Biogeography-Based Optimization Algorithm for Automatic Extractive Text Summarization

    Given the increasing number of documents, sites, online sources, and the users’ desire to quickly access information, automatic textual summarization has caught the attention of many researchers in this field. Researchers have presented different methods for text summarization as well as a useful summary of those texts including relevant document sentences. This study select...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010